Automatic computing methods for special functions. Part III. The sine, cosine, exponential integrals, and related functions
نویسندگان
چکیده
منابع مشابه
On High Precision Methods for Computing Integrals Involving Bessel Functions
The technique of Bakhvalov and Vasil'eva for evaluating Fourier integrals is generalized to integrals involving exponential and Bessel functions.
متن کاملOn High Precision Methods for Computing Integrals of Oscillatory Functions*
A short account of the most important methods for the evaluation of integrals of oscillatory functions and an unified approach for such a purpose are given.
متن کاملComputing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures
An account on computation of integrals of highly oscillatory functions based on the so-called complex integration methods is presented. Beside the basic idea of this approach some applications in computation of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified Hermite weight are considered, including some numerical examples.
متن کاملSeveral Differentiation Formulas of Special Functions. Part III
The articles [13], [15], [16], [1], [4], [10], [11], [17], [5], [14], [12], [2], [6], [9], [7], [8], and [3] provide the terminology and notation for this paper. For simplicity, we follow the rules: x, r, a, b denote real numbers, n denotes a natural number, Z denotes an open subset of R, and f , f1, f2, f3 denote partial functions from R to R. One can prove the following propositions: (1) x2 Z...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences
سال: 1976
ISSN: 0098-8979
DOI: 10.6028/jres.080b.031